Exploring Heterogeneity for Multi-Domain Recommendation with Decisive Factors Selection
نویسندگان
چکیده
To address the recommendation problems in the scenarios of multiple domains, in this paper, we propose a novel method, HMRec, which models both consistency and heterogeneity of users’ multiple behaviors in a unified framework. Moreover, the decisive factors of each domain can also be captured by our approach successfully. Experiments on the real multidomain dataset demonstrate the effectiveness of our model.
منابع مشابه
Multi-Focus Image Fusion in DCT Domain using Variance and Energy of Laplacian and Correlation Coefficient for Visual Sensor Networks
The purpose of multi-focus image fusion is gathering the essential information and the focused parts from the input multi-focus images into a single image. These multi-focus images are captured with different depths of focus of cameras. A lot of multi-focus image fusion techniques have been introduced using considering the focus measurement in the spatial domain. However, the multi-focus image ...
متن کاملSite Selection of Establishment of Small Earth Dams in semi Arid and semi Arid Zones by Spatial Multi-Criteria Evaluation (SMCE) (Case Study: Yoosef-abad Watershed)
Earth dams have been used widely recently in flood and sedimentation control projects and feeding ground waters in country's watersheds and correct locating for such structures is necessary for increasing their efficiency. In this work, it is attempted to determine the correct locations for constricting earth dams in Yoosef-abad watershed in Tabas using v and incorporating information layers. T...
متن کاملPSO for multi-objective problems: Criteria for leader selection and uniformity distribution
This paper proposes a method to solve multi-objective problems using improved Particle Swarm Optimization. We propose leader particles which guide other particles inside the problem domain. Two techniques are suggested for selection and deletion of such particles to improve the optimal solutions. The first one is based on the mean of the m optimal particles and the second one is based on appoin...
متن کاملPublic Transport Ontology for Passenger Information Retrieval
Passenger information aims at improving the user-friendliness of public transport systems while influencing passenger route choices to satisfy transit user’s travel requirements. The integration of transit information from multiple agencies is a major challenge in implementation of multi-modal passenger information systems. The problem of information sharing is further compounded by the multi-l...
متن کاملFeature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach
Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015